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a.s.]. If (X, 5) is admissible, M(3) = R¢, and each T;is a.s. differentiable,
then the Oseledec theorem implies that |[Dx(T, --- T1)v| has a.s. an
exponential growth rate equal to one of at most d values [where Dy(T,
-+ Ty) is the d X d derivative matrix of (T, --- T;) evaluated at X],
provided E log*||Dx(T})|| < c. [Take A, to be the derivative matrix for
T, evaluated at TU~Y(X), and apply the chain rule.] Thus one can assign
Lyapunov exponents to an admissible pair (X, 9) in this context. It is
natural to guess that this result extends to pairs (X, 5), for which M(5)
i a compact d-dimensional Riemannian manifold and each transfor-
mation in J is a.s. differentiable. Kifer proves this in Chapter III. (He
states his result for vector bundles.)

Chapter I'V and the first part of Chapter V give partial answers to the
following questions: When do the Lyapunov exponents coincide? When
is the largest one positive? When is the largest one continuous with
respect to the distribution of (X, 5)? The last half of Chapter V applies
the preceding theory to an analysis of the asymptotic behavior of solutions
to stochastic differential equations.

Despite some drawbacks (too many technicalities in some places, too
few applications, no index, pages without chapter headings), this book
should be read by anyone with a solid background in analysis and prob-
ability who wishes to learn about the ergodic theory of random trans-
formations. A concurrent reading of the works by Bougerol and Lacroix
(1985) and Cohen et al. (1986) on random matrices is helpful. I hope
that Kifer’s work will stimulate more research in this interesting area.

JonN C. KIEFFER
University of Minnesota
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Asymptotic Methods in Statistical Decision Theory.

Lucien LeCam. New York: Springer-Verlag, 1986. xxvi + 742 pp.
$49.95.

For more than 30 years Lucien LeCam has been actively constructing
his own view of asymptotic statistical theory. This massive book is the
only comprehensive account of the entire theory developed by LeCam
and his disciples. It is an important but difficult book. I will attempt to
mention the principal contents of the book and also help ease the reader’s
path.

LeCam’s starting point is a reformulation of Wald’s decision theory.
He first presented this reformulation in LeCam (1955), further developed
and refined it in succeeding papers, and gives it here in Chapters 1-3,
5, 7, and 8. These chapters also contain important special material re-
quired for the later asymptotic theory. This material, particularly that
concerning the related concepts of deficiency and insufficiency, forms
an important bridge to the asymptotics.

Chapter 6 introduces the notion of contiguity, one of LeCam’s best-
known and most important contributions to asymptotic theory. This
chapter is largely independent of the decision-theoretic chapters sur-
rounding it.

Chapters 10-12 are the climax of the first half of the book. Chapter
11 alone occupies more than 100 pages. These chapters establish ex-
tremely general conditions under which a sequence (or even a net!) of
experiments suitably converges to one involving only normal distribu-
tions. If so, statistical procedures that behave well in the limiting normal
problem will do asymptotically as well in the original sequence. Chapter
10 discusses the local theory in (shrinking) neighborhoods about a spec-
ified parameter point. Chapter 11 presents global theories yielding ap-
proximations that can be used over the whole parameter space. Chapter
12 describes the existence of approximately Gaussian posterior distri-
butions and the asymptotic behavior of Bayes procedures.

Chapters 16 and 17 occupy another 175 pages. They return to issues
raised in Chapters 10-12, but in settings that, although still general, are
specific enough to yield moderately explicit statements about asymptotic
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risks, precise bounds on rates of convergence, and related matters. These
last two chapters are really a redevelopment of asymptotics rather than
a direct continuation of the earlier chapters; only a few technical results
are needed here from Chapters 10-12, along with a general central limit
theorem for infinitely divisible distributions (proved in Chap. 15).

The book places severe demands on the reader’s mathematical and
statistical background. For mathematical background, a solid basic ed-
ucation in functional analysis is particularly important. In an appendix
LeCam surveys the functional analysis used, squashing two full graduate
courses in functional analysis into just 70 pages. Of course, if one is
willing to skip a few proofs one can get by with less than the two courses
surveyed here, but a first course in functional analysis seems essential.

For statistical background, LeCam suggests that the reader should have
been “exposed” to Bickel and Doksum (1977) or Ferguson (1967). LeCam
should also have mentioned a book [such as that by Scheffé (1959)] that
contains important background material for Chapter 11. But I think an
entirely different sort of statistical background is also necessary: One
needs to be familiar with LeCam’s achievements as further developed
and interpreted by others. The following paragraphs mention some ex-
amples.

Part (b) of Theorem 1 on pages 16-17 is sometimes called the Stein—
LeCam theorem. It is a general, abstract version of Stein (1955), but
with an entirely different proof. It contains a formal statement of Blyth’s
(1951) method for proving admissibility. That method is, of course, a
cornerstone for many admissibility proofs in the decision-theoretic lit-
erature, such as Stein (1959) or Brown and Hwang (1982). Farrell (1966)
included a statement and proof of a less general form of the Stein-LeCam
theorem, written in a style familiar to most statistically trained readers
(see also Brown 1987, pp. 254-268). It is not necessary to have read any
of these works to comprehend the version in LeCam’s book, but they
add layers of meaning to the theorem that are not hinted at in the book.

According to the introduction, Theorem 1 on page 115 is a “fairly
general form . . . of what is sometimes called the Hijek-LeCam asymp-
totic minimax theorem” (p. xviii). I doubt that many readers will rec-
ognize it as such—it appears to be a result about the approximability of
general decision procedures by nonrandomized ones. (Perhaps LeCam
even meant to refer to the earlier Theorem 1 on p. 109.) To get some
idea of the nature of the “Héjek-LeCam” theorem and its role in sta-
tistics, read Lehmann (1983, chap. 6) and then Héjek (1972).

In what is essentially a digression LeCam gives an elegant proof of the
Hunt-Stein theorem in Theorem 1 (p. 152). [I believe the following
hypothesis should replace the assumption concerning Ty: Let r, : 6 —
ro(6) be invariant under y, with ry(8) = (8, T,). The conclusion should
then be modified to be (8, T) =< r,.] Lehmann (1986, chap. 9) and
Kiefer (1966, pp. 261-265) provided reasonable preparation for this ver-
sion of the Hunt-Stein theorem. Brown (1986) included a treatment
similar to LeCam’s, but in a more conventional statistical setting, and
thus may also be useful.

Contiguity plays a key role in the asymptotic normality result (Theorem
1, p. 192) already mentioned in connection with the Hajek-LeCam theo-
rem. Nevertheless, contiguity has other important applications. Héjek
and Sidék (1967) gave a good idea of some of these further uses; their
work is thus valuable preparation for Chapter 11; Chapter 6, Section 3;
Chapter 10, Section 5; and Chapter 16, Sections 2 and 3. For example,
compare Héjek and Sidak’s pages 204-210 with LeCam’s Proposition 2
(Chap. 16, p. 470). Roussas (1972) is an alternate reference on contiguity.

Sections 4 and 5 of Chapter 16 concern the construction of estimators
that in standard settings are Vn-consistent. Familiarity with Wald’s (1949)
proof of the ordinary consistency of the maximum likelihood estimator
is a useful prerequisite for this material even though it is neither used
nor cited here. More directly relevant is the need for an example illus-
trating the general techniques described. Birge (1987a,b) contains such
an example, providing striking evidence of the potential power of the
results in these sections. [As LeCam notes, some of his results are due
originally to Birge (1980).]

Toward the end of Chapter 17 (Sec. 6) LeCam sketches robust asymp-
totic minimax results of Millar (1979) and Beran (1981) in the context
of this chapter. Perhaps the reader will find the original papers of Millar
and Beran to be more easily managed. These papers would be useful
preparation not only for this chapter, but for Chapter 11 as well. Wang
(1986) provided a useful concrete example of what can be obtained from
Millar’s results. Chapter 17 concerns in part the concept of differentia-
bility in quadratic mean (which is closely related to Frechet differentia-
bility of the family of densities). Hiiber (1981) gave a good discussion
of this latter concept, as well as further material that could prove useful
for understanding LeCam’s presentation.

LeCam states results in the maximum possible generality. The level
of generality is gradually reduced through the book, but only to the
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degree necessary to produce further results. In only a few places are
more particular results stated because of their convenience or special
applicability (e.g., see Chap. 11, Sec. 10, about x? tests). As LeCam
says, ‘“The presentation proceeds from the general to the particular since
this seemed the best way to emphasize the basic concepts” (p. xiii).
Surely this orientation has been an essential ingredient in the important
innovations (such as contiguity and differentiability in quadratic mean)
LeCam has brought to asymptotic theory. It also might seem to guarantee
that the results obtained should have the widest possible applicability.

On the other hand, this orientation and its execution place heavy
burdens on the reader. For example, Theorem 1 of Chapter 11 (Sec. 8)
is a basic result about the existence of Gaussian-shift experiments asymp-
totically equivalent to a given sequence of experiments. The theorem
applies if “the requirements (1) to (4) above” are satisfied, in addition
to “the requirements (A), (B), (D), (E), and (FF) of Section 6 (p. 284).
[Actually, requirements (B), (D), and (E) are formally defined in Sec.
5.] These requirements are not of the classical, easily understood, quickly
checked variety, such as “f,(x) is continuous in 6 for almost all x.”
Rather, as an example, requirement (A) says that “for every favorable
0 every s € 6 such that q(, s) remains bounded [as n — =] is accessible”
(p. 247). (The terms “favorable,” “g,” and “accessible” were also de-
fined in Sec. 6.)

In short, the organization and execution of the book require that the
reader carry a large bulk of technical material over long distances, and
nearly the entire book must be carefully read at least once through to
discern the full, correct, logical route to specific applications.

Given the nature of this book, a good index would be a valuable tool.
The present index is helpful but incomplete: It only lists definitions, and
this cannot help the reader discover that “good,” defined on page 284,
is discussed on page 610, and so forth.

The bibliography is complete in one respect and distressingly inade-
quate in others. It contains a full, useful compilation of works dealing
with asymptotics from the perspective of the book (e.g., those by LeCam
himself, and by Héjek, Torgerson, Beran, Millar, Birge, and Moussatat).
On the other hand, references to useful background material (a very
small portion of which has been cited in this review) are meager. Ref-
erences to the many specific applications of asymptotic theory are almost
entirely absent.

Finally, LeCam cites many important works of other authors by men-
tioning the name of the author, but he fails to provide any further in-
formation or citation in the text or bibliography. Here are the citations
for a few of the nearly two dozen instances I found: Birnbaum (1955)
[mentioned on pp. 196, 297; LeCam should also mention Stein (1956a)
in this context], Neyman (1959) or Neyman and Scott (1967) (mentioned
on p. 207), Stein (1956b) (mentioned on pp. 235, 248, 256), Stone (1975)
(mentioned on p. 235), Chernoff and Lehmann (1954) (mentioned on
p. 306), and Ferguson (1973) (mentioned on p. 618).

In conclusion, this is a book for serious study. The mathematically or
statistically unprepared reader or the prepared but casual reader will
likely get nothing from it but a headache. But the prepared and diligent
reader will find a gold mine, from which can be distilled an effective and
powerful understanding of statistical asymptotics.

LAWRENCE D. BROWN
Cornell University
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Stochastic Geometry and Its Applications.

D. Stoyan, W. S. Kendall, and J. Mecke. Chichester, U.K.: John
Wiley, 1987. 345 pp. $45.59.

Geometric probability deals with questions such as the following: For
three points picked randomly in a region, what is the chance they form
the vertices of an acute triangle? If you throw discs randomly onto a
square, what is the chance the square is completely covered? For the
planar tessallation (pattern of regions) induced by randomly placing lines,
what is the area of a typical polygon? The name stochastic geometry has
been given a slight nuance: the study of probability models for spatial
geometric patterns, with a view toward statistical applications. I shall
treat separately the book’s primary aim of describing probability models
and their properties, and its secondary statistical applications.

The style is a little unusual, using rigorous and abstract mathematical
language but omitting most of the proofs. A lot of material is covered
in 345 pages, but the reader needs some mathematical sophistication,
approximately at the level of a graduate course in probability theory.
There are three intertwined themes. One treats spatial point processes,
starting with the Poisson process and its variations and continuing to
clustering models, hard-core models, and Gibbs models, and including
a general discussion of moment measures, Palm (i.e., conditional) dis-
tributions, and abstract point processes. The second repeats the first in
the context of random sets, starting from the simplest Boolean model
(iid sets with Poisson centers). The third is a collection of special topics:
Poisson processes of lines, the induced tessallation, the Voronoi tessal-
lation, a chapter on stereology (studying three-dimensional objects when
one has only data for slices), fiber processes of line segments (analogous
to earthquake fault lines), and random triangles via sophisticated pa-
rameterization of the “shape-space” of triangles.
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